EL961414558

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION FOR LETTERS PATENT

APPLICATION MODEL THAT INTEGRATES THE
WEB EXPERIENCE WITH THE TRADITIONAL
CLIENT APPLICATION EXPERIENCE

Inventor(s):
Margaret Goodwin
Mark Alcazar

ATTORNEY'S DOCKET NO. MS1-1791US

12

13

14

15

16

17

18

20

21

22

23

24

25

TECHNICAL FIELD -

This invention relates to the creation of software applications, and more
particularly, to the development of an application model that integrates the Web

experience with the client application experience.

BACKGROUND OF THE INVENTION

Today there are essentially two types of applications: Web applications and
traditional desktop or client applications. Web applications are a new type of
software program that is commonly deployed as multiple Web pages accessible
over the Internet. A conventional Web application includes multiple Web pages
representing markup-based documents. The Web application may also include
script or other resources that are accessed through the Web pages. Commonly, the
Web app is stored on a Web server and downloaded to a local computer when
used. Currently, it is not actually possible to download and install a typical Web

app for subsequent use when the computer is offline.

Traditional desktop or client applications are software programs that are
embodied largely if not exclusively in executable code, rather than HTML pages.
Typically, desktop applications are installed directly to a local computer and
execute on that computer. They execute with high permissions and typically take

full advantage of the platform on which they are installed.

Both types of application have their own strengths and weaknesses. For
instance, Web applications are easily installed and typically do not impact the local

computer. Web applications provide users with an intuitive mechanism for

Iee@hayes plic 509:324-9256 1 1118031134 MS1-1791US.PAT

20

21

22

23

24

25

navigating backward and forwards through the pages of the application. However,
Web applications usually cannot take full advantage of the installed platform
because they do not have sufficient execution permissions. Users commonly do
not like the idea that an application so easily executed has full access to their

computers.

In contrast, usérs commonly expect the traditional application to have
heightened permissions because installing them is such a deliberate process.
However, there is no way to limit the permissions under which a traditional
application runs, so a user who chooses to install a traditional desktop application
has to trust it completely. Also, once a user installs a traditional application,
upgrades to the application are more difficult to obtain. Each time the user
launches the application, the same version is executed, regardless of whether
patches or upgrades to the application are available. Users often accept this
tradeoff because the likelihood is significant that upgrading one traditional

application may impact or disable another installed application.

These and other problems have faced software developers for some time.

Until now, an adequate solution has eluded those skilled in the art.

SUMMARY OF THE INVENTION

The invention is directed at an "Application Model" that brings together the
best characteristics of the Web experience with the best characteristics of
traditional desktop applications, and bridges the gap between the two worlds. It

provides a powerful framework for secure applications, simplifies development,

lee @hayes pic s09-3248258 2 1118031134 MS1-1791US.PAT

(84

11

12

13

14

15

20

21

22

23

24

25

deployment, and maintenance for client applications, and provides a simpler, more

consistent user experience.

The Application Model includes elements that define the scope of an
application, its startup and shutdown behavior, and how it manages windows and
resources; provide basic navigation functionality, journaling and journal
extensibility, browser integration, and Structured Navigation; and define the way
an application is deployed, installed, activated, updated, rolled back, and removed

from the system in a secure, non-impactful way.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a functional block diagram generally illustrating an "Application
Model" that brings together the best characteristics of the Web experience with the
best characteristics of traditional desktop applications, and bridges the gap

between the two worlds.

Figure 2 is a functional block diagram of a network environment having a
client computer, a server, and an application constructed in accordance with the

Application Model.

Figure 3 is a functional block diagram generally illustrating certain

components of an application implementing core elements of the Application

Model.

lee @hayes pic 509-324-6256 3 1118031134 MS1-1791US.PAT

20

21

22

23

24

25

Figure 4 is a functional block diagram illustrating components of a system

that implements security in accordance with the Application Model.

Figure 5 illustrates a computing device that may be used in illustrative

implementations of the present invention.

DETAILED DESCRIPTION

Figure 1 is a functional block diagram generally illustrating an "Application
Model" 100 that brings together the best characteristics of the Web experience
with the best characteristics of traditional desktop applications, and bridges the
gap between the two worlds. It provides a powerful frameWork for secure
applications, simplifies development, deployment, and maintenance for client
applications, and provides a simpler, more consistent user experience. The
Application Model includes three elements: an Application Framework 101, a
Navigation Framework 103, and Application Lifecycle Management 105. Each of

these elements is described briefly here, and described in detail below.

The Application Framework 101 defines the scope of the application, its
startup and shutdown behavior, and how it manages windows and resources,
whether local or online. The application framework 101 provides the power and
extensibility of the traditional desktop application in a way that is accessible to
Web developers. It also supports a new genre of dialog that is more effective and
less annoying than traditional modal dialogs and better integrated with its

environment.

lee@hayes pc 509.324-0256 4 1118031134 MS1-1791US.PAT

10

11

15

16

17

18

20

21

22

23

24

25

The Navigation Framework 103 builds on the Application Framework 101
to bring the best of the Web experience to the client application space. It includes
basic navigation functionality, journaling and journal extensibility, browser
integration, and Structured Navigation, which is a new and better way to build
wizards and applications to walk users through complex or unfamiliar procedures

in a way that leverages the familiar look and feel of the Web.

Application Lifecycle Management 105 defines the way an application is
deployed, installed, activated, updated, rolled back, and removed from the system
in a secure, non-impactful way that is easy to administer and less intrusive to

users, similar to Web deployment today.

ILLUSTRATIVE IMPLEMENTATIONS

Figure 2 is a functional block diagram of a network environment having a
client computer 201, a server 202, and an application 210 constructed in
accordance with the Application Model 100 being described in this document.
Currently, the application 210 is stored on the server 202 and is available for

download to the client computer201.

The application 210 includes an application manifest 211, an application
definition file 212, and a deployment manifest 213. The application may also
include other files (not shown) containing markup, code, and resources belonging
to the application 210. The application manifest 211 declares the resources
belonging to the application, as well as security permissions being requested by

the application 210. The security permissions are discussed below in conjunction

lee@hayes pic 509-3240256 5 1118031134 MS1-1791US.PAT

)

14

15

16

20

21

22

23

24

25

with Figure 4. The application manifest 211 also describes the application's
dependencies, such as additional libraries and resources that are needed to run the
application 210. The application manifest 211 also specifies shell integration
information, like file associations for the application 210 and whether to create

shortcuts on the client computer 201 in the Start menu.

The application definition file 212 provides a declarative definition of the
application 210. The application definition file 212 may be written in XAML
(eXtensible Application Markup Language) and code (using any managed code
language). The deployment manifest 213 includes a URI that points to a current

version of the application 210, and the intervals at which to check for updates.

Application Lifecycle Management

Application Lifecycle Management refers to the characteristics and features
of the Application Model that relate to managing the installed state of an
application throughout its lifecycle. To begin, the application 210 can either be
run from the sever (as an "Express Application"), or locally (as a "Managed
Application"). In most cases, these choices don’t require any code changes. They

simply require changing an attribute in the application manifest 211.

An Express application is an application that runs from the server 202.
While an Express application may be cached on the client computer 201 in a
transient cache 250, it may be scavenged from the cache 250 at any time, based on
available resources and on how recently it was used, so it is not guaranteed to

work offline. An Express application may also require online resources to run

lee@hayes pc 5093249256 6 1118031134 MS1-1791US.PAT

12

13

14

15

16

20

21

22

23

24

25

properly. Express applications are always hosted in the browser, and cannot
request permissions beyond a default permission set. This ensures that the user can
navigate to the application and it loads without any prompts or dialogs, just like a
Web page. Express applications don’t create shortcuts or aliases to themselves,
and have no permanent impact on the client computer 201. The advantage of
Express applications over Web pages is that they are real applications that can take
full advantage of the Application Framework and the Navigation Framework
(described below), can run locally so they have better performance than server-
side applications, and can fully expioit the client computer hardware and operating

system features.

Managed applications are deployed the same way as Express applications.
The application provider simply copies the application directory 215 and the
deployment manifest 213 to the server. The user also accesses Managed
applications the same way they access Express apps. The user navigates to an
URL that points to the deployment manifest 213. Like Express applications,
Managed applications download progressively to give the user immediate
interaction with the application. Unlike Express applications, Managed
applications are available offline, and are integrated with the client computer
environment, which makes them more discoverable. Examples of this integration
included shortcuts or aliases to, and file associations for, the Managed
applications. Once a managed application is installed, it can either be launched
from the Shell using a shortcut or alias, or by double-clicking a file associated

with the application, or it can be navigated to in the browser by clicking a

lee@®hayes pic 5093246256 7 1118031134 MS1-1791US.PAT

11

12

13

20

21

22

23

24

25

hyperlink, entering a URI in the address well, or selecting a stored hyperlink in a

Favorites menu. Managed applications are always launched and run locally.

An installer 252 uses the application manifest 211 to control download and
installation. The installer 252 also invokes a trust tanager 254 during installation.
The trust manager 254 uses the application manifest 211 to determine what
permissions the application requires to run. (See Security, below), what file
associations to register, and the application name and icon to use in the Start menu

and task bar.

When the user first navigates to the application 210, it is actually the
deployment manifest 213 they navigate to. The deployment manifest 213 points
to the URI where the latest version of the application is published, and the
installer 252 downloads and installs the application 210 from there. This makes it
possible to post updates to the application 210 without disrupting any downloads
currently in progress, while keeping the same URI for the application 210. When a
new version is posted, the deployment manifest 210 is changed to point to the new
version. Any downloads in progress continue and any new navigations to the

deployment manifest 213 are redirected to the latest version.

Progressive installation

One of the advantages of the Web over traditional desktop applications is
that when a user navigates to a Web page or application, it downloads
progressively, so they can start interacting with it immediately. Traditionally, that

hasn’t been possible with desktop applications. The Application Model supports

lee@hayes pic s0932¢-9258 8 1118031134 MS1-1791US.PAT

Al

11

12

13

14

15

16

17

18

20

21

22

23

24

25

progressive download for Managed applications as well as Express applications.
The application manifest 211 specifies subsets of components associated with the
application 210 as Required, OnDemand, and Online. The subset designated as
Required should include the minimum code necessary for the application 210 to
run on the client computer 201, and will always include at least the application
definition file 212 and the application’s startup page. The subset of the application
210 designated as Required is downloaded immediately and stored in an
application cache 260 on the client computer 201, and the application 210 is
launched. Because the minimum code is considerably smaller than the full
application, the user can begin interacting with the application right away, similar

to a user's experience when interacting with a traditional Web application.

As the user interacts with the application 210, the resources designated as
OnDemand are drizzle-download in the background. When the user requests a
specific resource, e.g., by clicking a hyperlink, that resource takes precedence over
the other resources that are drizzling down in the background and is downloaded
on demand. As additional OnDemand resources are downloaded, they’re stored in
the application cache 260 as well. Resources that are designated as Online
resources are stored in the transient cache 250. As resources are downloaded, the
next time they’re requested, they’re retrieved from the application cache 260.
Once the application 210 has been fully installed on the client computer 201, it
may be navigated to in the browser or invoked from the shell, but it is always

launched locally from the client computer 201.

Update, Rollback, Uninstall

|3e®hayes pic 509-324-9256 9 1118031134 MS1-1791US.PAT

12

13

14

15

16

17

18

19

20

21

22

23

24

25

When downloading the application 210, the installer 252 downloads a copy
of the deployment manifest 213, which specifies the Uri to check for application
updates and the intervals at which to check. The installer 213 polls the server 202
for updates at the intervals specified in the deployment manifest 213 to determine
whether tﬁere is an update available. If there are any updates, the updated
components of the application 210 are downloaded transparently in the
background without interrupting the user. This ensures that the user always has the

latest version of the application 210 whenever they launch it.

Users can painlessly rollback or uninstall the application 210 through
Add/Remove Programs, and it will not impact other applications on the client
computer 201. This is because applications are installed in their own isolated
cache, with all the components they need to run. An application will not overwrite
a resource required by another application because it has its own copy of all its
dependencies. Because shortcuts and file associations are declared in the
application manifest 211, which is used for installation, rollback, and uninstall,
these will automatically be removed if the application 210 is uninstalled, and will

be mapped to the appropriate version if the application 210 is rolled back.

Host in Browser vs. Standalone

One of the unique aspects of the Application Model is the ability to write
the same application and decide at compile time whether to host it in the browser
275 or a stand-alone top level window 276. An attribute in the application file,
named HostInBrowser, is used for this determination. Setting this attribute to

“True” specifies that the application 210 should be hosted in the browser 275.

lee@hayes pic 509-3249256 10 1118031134 MS1-1791US.PAT

10

11

18

19

20

21

22

23

24

25

Setting it to “False” specifies that the application 210 will be hosted in its own

top-level window 276.

Unlike existing technologies, the application code is essentially identical in
either case. Applications execute in a common execution environment 280 that
can be either owned by the browser or not. When the code is launched, a host
sniffer component 281 determines from the HostInBrowser attribute which hosting
environment is appropriate. Based on that indicator, the code is launched in the

appropriate hosting environment.

Launching the application 210 can occur in two ways: either by activating a
link to the locally stored application, or by navigating to an URL in the browser.
When launching the application 210 from the link, the shell may launch a shell
extension handler registered to handle files of the type that was activated. The
Shell extension handler for Application Model applications uses a host sniffer to
determine the hosting environment in which to invoke the code. The host sniffer
determines the value of the HostInBrowser attribute, and either instructs the shell
server to launch the application 210 or to invoke the browser 275 with instructions

to navigate to it.

Likewise, navigating to the application 210 using the browser 275 makes
use of a mime-type handler, which is a handler registered with the browser 275 to
handle mime-types associated with applications that may be hosted in more than

one environment. The browser server proxy is configured to determine the host

lee @hayes pc 509-3249256 1 1 1118031134 MS1-1791US.PAT

3]

20

21

22

23

24

25

environment for the application using the host sniffer 281 and launch it in the

appropriate hosting environment.

Today, whether an application runs in the browser or standalone is
determined by whether it’s run from a Web server or the local machine. Ideally,
the hosting environment would be determined by the requirements of the

application, rather than where the bits are stored.

The browser 275 is well-suited to task-based applications, whose purpose is
to accomplish a specific task, like retrieving, submitting, or tracking data,
configuring or managing resources, and the like. Hosting in the browser provides
convenient serial access to applications, and relieves the user of having to manage

multiple windows.

Standalone windows 276 are well suited to background-style applications,
whose purpose requires that they stay open while the user interacts with other
applications in the browser, and to applications that are not based on the
navigation model. For example, document/content editors don’t gain anything
from being navigation-based. In this type of application, actions are initiated by

the user, and there is no common sequence in which actions occur.

Background-style applications may be hosted in a standalone window, and
can be minimized when the user isn’t directly interacting with them. For example,
people use media players to play music while they work, and they frequently

interact with them to select a new song or playlist. This type of interaction should

lee@hayes pc 50932092568 1 2 1118031134 MS1-1791US.PAT

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

not interrupt their workflow. In other words, they shouldn’t have to navigate away
from the application they’re currently using to perform some task in order to select
a new song or playlist (especially if navigating to a new playlist would destroy
their Forward stack so they couldn’t easily return to their task). These types of
applications make sense as a navigation application, but do not make sense to host

in the browser 275.

The Application Model is equally well suited to either type of hosting, but
the decision about how to host a particular application is up to the developer.
Today, a developer has to decide before writing code whether the application will
be a Web application or a traditional desktop application. This decision dictates
everything from what language and tools the developer can use to write the
application to the environment in which the application will be hosted at runtime.
Because different types of applications require different tools and skillsets to write
them, developers are typically limited to developing either Web applications or
desktop applications, but seldom both. This invention makes it possible to use the

same skillset and tools to develop either type of application.

Figure 3 is a functional block diagram generally illustrating certain
components of an application 301 constructed in accordance with the Application
Model 100. The application 301 is essentially illustrated as a group of interrelated
classes of code that may be used to implement the application 301. It will be
appreciated that, when executed, many of the classes described will be instantiated

as objects, although certain properties, methods, and events of the classes may still

lee@hayes pxc 5083249256 1 3 1118031134 MS1-1791US.PAT

20

21

22

23

24

25

be employed statically. The components illustrated in Figure 3 service both the
Application Framework and the Navigation Framework elements of the
Application Model. Accordingly, those two elements will be described with

reference to the components illustrated in Figure 3.

Application Framework

In traditional desktop programming, there is a Main function that defines
the lifetime of a desktop application. The desktop application begins when Main()
is invoked, and ends when Main() returns. In conventional Web programming,
there is no corresponding function or object that scopes the application. In this
Application Model, the application 301 is defined and scoped by an abplication
object, which is a global object that persists in memory for the lifetime of each
application session. The application object is an instance of an application
class 303, described below. The application object has knowledge of the resources
belonging to the application 301, and provides an isolation boundary between
itself and other applications or external resources. It is used by the platform to
identify, reference, and communicate with the application 301. It is also used
within the application 301 to manage windows and resources, specify startup and
shutdown behavior, handle configuration settings, specify visual styles for the
application, share code, state, and resources across navigations, and handle

application-wide events.

Applicatioh class
The basic application class 303 is intended to be able to support any

number of different types of applications, so it is designed to be as low-policy as

Iee@hayes pic 5093249256) 14 1118031134 MS1-1791US.PAT

L 1]

20

21

22

23

24

25

possible. The only methods on the basic application class 303 are ShutDown,
which closes the application 301, FindResource, which can be used to retrieve any
resource belonging to the application 301, and GetService, which is used to

retrieve any service exposed by the application 301.

On execution, the application object raises events on StartingUp,
ShuttingDown, Activate (raised when one of the application’s windows receives
focus, after another application has had focus) and Deactivate (when the
application loses focus), and SessionEnding (raised when the application is being
ended by the system either because the system is shutting down or the user is
logging off). The application can handle these events to perform whatever actions
are necessary in response to the condition that raised them. The StartingUp,
ShuttingDown, and SessionEnding events are cancelable, allowing the developer
to prevent the action from taking place. In one embodiment, canceling
SessionEnding is treated as a hint. There is no guarantee the session will not end,
but it gives the developer a chance to save state or perform other necessary

cleanup activities before the application is terminated.

The application class 303 has a static property of type "Application," called
Current, that returns the current instance of the Application class 303. The
Application class 303 has a Windows collection, which enables the application
301 to manage the windows belonging to the application 301. Whenever a new
window is created, it is automatically added to this collection. The Application
class 303 also has a MainWindow property which is used to get the application’s

primary window. For an application hosted in the browser, this may be the

lee@hayes pic 505-324-9256 1 5 1118031134 MS1-1791US.PAT

17

18

19

20

21

22

23

24

25

browser window. For other applications, this is set by default to the first window

created, but may be explicitly set to a different window by the developer.

The Application class 303 also has a Resources collection, which is used to
store resources, such as styles. Styles are rules for visually styling elements in a
tree hierarchy. The scope of a style is the element to which ‘the style is applied and
its children. Styles are defined as resources so they can be added to the Resources
collection. When a style is specified at the application object level, it applies to all
the windows within the application 301 and, therefore, to every visual element in
the application 301. A developer can use application object-level styles to enforce

a consistent look and feel throughout the application 301.

The Application class 303 also defines a Settings property that is used to
store and retrieve application settings. Finally, it has a ShutDownMode property,
which controls what action causes the application 301 to be terminated. The
options may include: Shut down when the Main Window is closed, Shut down
when the last window has been closed, or only shut down when the ShutDown

method is called.

Window class

Windows in the Application Model support features like transparency,
rotation, non-rectangular surface, etc., which aren’t possible with conventional
desktop windows today. The Window class 305 provides a service, by invoking

GetService, that exposes a conventional window handle for the Window that can

lee @hayes e 509-324-9258 16 1118031134 MS1-1791US.PAT

10

11

12

13

20

21

22

23

24

25

be used for interoperability with legacy windows, when parenting a legacy

window to an Application Model window and vice versa.

The Window class 303 provides the typical properties available on
windows today for accessing title, icon, size, position, style, state, whether the
window has focus, whether it is visible, whether it is closed, whether to display it
in a taskbar, whether it should be topmost, accessing its owned windows, etc. It

also has a DialogResult property for obtaining the result if the window is a dialog.

The Window object raises events when it is Loading (about to open),
Closing, Activated (receives focus), Deactivated (loses focus), and when its size,

location, or state is changing.

The Window class 305 has methods to Show, Hide, Close, DragMove,
GetService, ShowDialog, and ShowApplicationDialog. ShowApplicationDialog is
equivalent to the conventional ShowDialog method, which shows the standard
type of dialog users are familiar with today. This is a floating thread-modal dialog
that blocks interaction with any window on the thread from which it was opened

until the user closes it.

In contrast, the ShowDialog method of the window class 305 displays a
new kind of dialog, which is modal only to its parent window. This dialog blocks
interaction with the parent window’s content, but other windows in the application

301 are still interactive. The dialog’s parent window can still be moved, resized,

" minimized, maximized, or restored while the dialog is open. If the parent window

lee@hayes pic 509:324-0256 17 1118031134 MS1-1791US.PAT

13

14

15

16

17

19

20

21

22

23

24

25

is move or minimized, the dialog is moved or minimized along with it. If the
parent window is minimized and then restored, the dialog is restored along with it,
and the window content is still disabled until the user closes the dialog. This is a
new concept for programmers and will provide a much better user experience for
most cases when a dialog only applies to the content of a single window because it
allows users to continue interacting with other windows in the application in a

normal manner.

Pane class

The pane class 307 provides a layer of abstraction that makes it possible to
programmatically access common window properties without having to know
whether the “window” is an actual stand-alone window or the system browser.
The pane class 307 gets the BrowserWindowService, if hosted in the browser, or
the IWindowSerVice, if hosted in a standalone window, and uses that to
communicate with the window or browser without the application 301 having to
know which one is actually present. The pane class 307 exposes a Navigator
property (the INavigator of the containing Window or BrowserWindowService),

as well as all of the IWindowService properties (described below).

IWindowService interface and the BrowserWindowService class

The IWindowService interface 309 exposes the following properties: Text
(the title), Icon, Top, Left, Height, Width, Maximum/MinimumContentHeight,
Maximum/MinimumContentWidth, ContentSize, WindowState (Maximized,
Minimized, Normal), and WindowAutoLocation (CenterScreen, CenterOwner,

WindowsDefaultLocation, None).

lee@hayes pac s09-324-9288 1 8 1118031134 MS1-1791US.PAT

20

2]

22

23

24

25

The BrowserWindowService class 311 provides the broperties exposed by
IWindowService and, in addition, exposes the following propefties and methods
that are unique to the browser: DisplayMode (Normal, FullScreen, TheaterMode)
and ShowMenuBar. It also has methods to start and stop graphical indications that
a navigation is in progress, and a GetService method. A developer that wants to
access browser-specific functionality can obtain the BrowserWindowService 311
by invoking GetService on the application object or on a NavigationWindow or
Pane, providing that the application 301 is hosted in the browser. If it is not

hosted in the browser, the request will return null.

Using the BrowserWindowService 311 explicitly sacrifices the host-
agnosticism that allows the application 301 to be hosted either in the browser or

standalone without making any significant change to code.

Navigation Framework

The third and final element of the Application Model 100 is the Navigation
Framework. The Navigation Framework supports navigation-based applications
that leverage users’ familiarity with navigation and journaling metaphors on the
Web to provide a more familiar, consistent user experience on the client, whether

hosted in the system browser or a stand-alone top level window.

NavigationApplication class
The purpose of the NavigationApplication class 315 is to make it easier for

developers to write navigation-based applications. It is derived from the

lee@hayes pic 509320256 19 1118031134 MS1-1791US.PAT

20

21

22

23

24

25

Application class 303, so it contains the properties, methods, and events exposed
by that class. Additionally, the NavigationApplication class 315 has a StartupUri
property that is used to specify a page or element to navigate to when the
application 301 is first launched. It also has a Prc;perties collection that allows the
application developer to share global state across pages without having to subclass
the Application, and supports databinding to these properties. A Connected

property tells whether the machine the application is running on is currently

connected to a network.

The NavigationApplication class 315 also listens for navigation events on
NavigationContainers (described below) within the application 301 and re-fires
the events, so the application developer can create handlers for all application-
wide events in a single place. If a NavigationApplication is not hosted in the

browser, the default window created for it is a NavigationWindow.

The NavigationApplication object provides a Properties collection to store
and retrieve arbitrary application state that can be shared across the entire
application as well as providing a single place to handle navigation events
throughout the application 301. By using the NavigationApplication class,
properties can be stored without having to learn subclassing. This simplifies the
development process for developers who aren’t familiar with the concept of

subclassing.

INavigator interface and NavigationContainer class

lee@hayes pic 5093249256 20 1118031134 MS1-1791US.PAT

10

11

12

13

14

20

21

22

23

24

25

The INavigator interface 308 exposes navigation-related properties,
methods, and events for the application 301. Any element that allows navigation
implements the [Navigator interface 308. The INavigator interface 308 provides
an ID property to allow it to be specified as the target of a hyperlink navigation. It
has a Uri property that can provide the current Uri of the INavigator’s content if a
navigation is not in progress, or the Uri being navigated to if there is a navigation
in progress. Setting this property initiates a navigation to the Uri specified. There
is also a CurrentUri property, which is read-only, and returns the current Uri, even
when a navigation is in progress. A Contént property provides access to the root
of the element tree contained within the INavigator. A Journal property returns
the Journal instance in which navigations are tracked, while CanGoForward and
CanGoBack properties tell whether there are any entries in the Forward or Back
branch of the Journal, respectively. A Synchronous property specifies whether
navigations are performed synchronously or asynchronously. (See

Synchronous/Aysynchronous Navigation below.)

The INavigator interface 317 has several overloaded navigation methods,
which variously allow navigation to a Uri or root element of an element tree, and
allow the developer to specify whether the navigation is synchronous or
asynchronous. It is also possible to pass arbitrary data (as an object) along with the
navigation. This data can be retrieved in the navigation event handlers. The
INavigator interface also exposes a Refresh method to refresh the content by
reloading it from the source, a StopLoading method to cancel any pending
download operation, and a GoForward and GoBack method to initiate a Journal

navigation.

lee@hayes prc 609-324-9256 2 1 1118031134 MS1-1791US.PAT

10

11

12

13

14

20

21

22

23

24

25

INavigator interface 317 implementations raise events for stages of
navigation to allow complete flexibility for the developer to modify the behavior
to suit the application 301. Navigating (fired before a navigation begins),
LoadStarted (fired immediately after a navigation begins), NavigationProgress
(fired periodically throughout the navigation to indicate how much has been
downloaded and how much remains), NavigationError (fired when an error occurs
in navigation or download), Navigated (fired when the target has been found and
download has begun), and LoadCompleted (fired when all content has been
downloaded and parsed) are examples. Of these, only the Navigating event can be

canceled, which prevents the navigation from occurring.

The NavigationContainer class 319 provides an implementation of
INavigator that is used by Frame. It can also be reused by third party component
developers who want to implement new types of navigable elements or classes. In
addition to INavigator, it also exposes 1JournalData, which has methods to enable
persisting state to the journal when navigating away from the current page, and
restoring state when navigating back to it by way of the Journal (Back/Forward

navigation).

NavigationWindow class

The NavigationWindow class 321 is derived from the Window class 305,
but also implements [Navigator by delegating to a Frame element in its Visual
Tree. Both Window and NavigationWindow support styling of their Visual tree.

With NavigationWindow, styling enables part of the window to persist across

lee@hayes px 509-324-5256 22 1118031134 MS1-1791US.PAT

20

21

22

23

24

25

navigations so that “navigation chrome” (back / forward buttons) remain as

navigations occur.

Synchronous/Asynchronous Navigation

On the Web today, navigation is asynchronous. Some applications,
particularly when installed locally, may prefer synchronous ﬁavigation so that Ul
on a page appears simultaneously. There are also times when a developer may
want a particular navigation instance to be synchronous, for example, when
navigating to a PageFunction (described below). If the developer wants to pass
some state to the new PageFunction that will be reflected in the Ul the
PageFunction displays, he needs to be able to navigate to the UI and then set a
property on it in the PageFunction’s constructor. If the navigation is asynchronous,
he can’t do this because the element he wants to change may not have been parsed
yet. The developer could use the LoadCompleted event for this, but the relevant
element may already be displayed before it gets changed. Accordingly, the

Application Model provides mechanisms to enable synchronous navigation.

By default, navigation is asynchronous unless otherwise specified.
However, a developer may specify that an application’s default navigation
behavior is synchronous by setting the value of the Synchronous attribute in the
application class 303 definition to “true”. The developer can also specify that the
default navigation behavior for a particular INavigator (NavigationContainer or
NavigationWindow) is synchronous by setting the Synchronous attribute on the
NavigationContainer object or NavigationWindow object to “true”. If the default

navigation behavior for the application is synchronous, a developer can override

lee@hayes pic 509:324.9256 23 1118031134 MS1-1791USPAT

13

14

15

16

17

20

21

22

23

24

25

that for a specific NavigationContainer object or NavigationWindow object by
setting the Synchronous attribute on. it to “false.” To specify synchronous
navigation on a hyperlink, when the application or containing INavigator is not
synchronous, a developer can set the value of the Synchronous attribute on the

hyperlink to “true” (or vice versa).

Journaling

Journaling is the process by which the Navigation Framework tracks
history. A "journal" enables users to retrace their steps backward and forward in a
linear navigation sequence. Whether a navigation application is hosted in the
browser or in a standalone NavigationWindow, each navigation is persisted in the
journal, and can be revisited in a linear sequence by using the forward and back
buttons or by invoking the GoForward and GoBack methods. Each

NavigationWindow has its own Journal object.

Journal class and JournalEntry class

The default behavior of the Journal is the same as the Journal behavior of
the browser today, thereby providing users with a familiar Web experience. In
addition, the application 301 can insert virtual Journal entries that perform DOM
operations on the current page, and applications can remove entries from the

journal, but only within the application’s own journal (not the system journal).

The Journal class 325 has the following methods: AddEntry, RemoveEntry,
and GetEnumerator. GetEnumerator returns an enumerator over the current list of

JournalEntries in the Journal. The RemoveEntry method takes an offset and

lee@hayes pic 509-324-9256 24 1118031134 MS1-1791US.PAT

10

11

12

20

21

22

23

24

25

removes the JournalEntry at that that offset in the Back stack. The overloaded
AddEntry method allows the developer to insert a JournalEntry either at the
current position, or at a specified offset. To add a journal entry to the journal, an

application derives a class from the JournalEntry class 327.

The JournalEntry class 327 has two properties, Name and Uri. The name is
the text that is displayed in a dropdown list on the Back/Forward buttons, and the
Uri is the URI of the stored page. The JouranlEntry class 327 has only one
method, called Replay. When adding a custom entry to the Journal, the derived
class overrides the Replay method to perform arbitrary DOM operations on the
tree to restore it to its previous state. The derived class should contain whatever
properties or methods are necessary to store and replay the state changes. The
overridden Replay method returns a new JournalEntry that undoes whatever action
it performed in the method itself. This JournalEntry will be inserted in the Journal

to be replayed when the inverse Journal navigation is performed.

For example, if the custom JournalEntry is being replayed as the result of a
Back navigation, the JournalEntry returned by its Replay method is placed in the
Forward stack. When the user navigates Forward, this journal entry is replayed,
restoring the state of the page just prior to the Back navigation. Likewise, when a
Forward navigation takes place, the returned JournalEntry is placed in the Back
stack, so when the user navigates Back, the state of the page can be restored. The
JournalEntry returned by the Replay method should perform the inverse of

whatever operation the Replay method performed.

lee@hayes pic 509:324-6256 2 5 1118031134 MS1-1791US.PAT

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Classes derived from JournalEntry should implement ISerializable, so they

can be stored in the system Journal if the application is hosted in the browser.

IJournalData class

When a navigatidn takes place, the controls on the page that is going away
are given an opportunity to persist their state to the journal, and to reload it when
the user revisits the page. To persist its state in the journal, and restore it when the
page is revisited, a control implements the IJournalData interface 323. The
IJournalData class has two methods, Save and Load, and a PersistID property that

is used by the Journal.

Structured Navigation

In many traditional applications, where the user is either familiar with the
task, or where the user is creating arbitrary content, it is natural for the user to lead
the application. For infrequent or complex tasks that require specific procedures to
be followed in a specific order, it makes more sense for the application to lead the
user. This is best accomplished by providing a structured navigation sequence
through pages that each have a focused purpose, communicated to the user
through a direct question or instruction, and a simple control layout so the user
knows exactly what’s expected at any given point. Structured navigation is well
suited to this kind of application. The PageFunction class 329 is the building block

for Structured Navigation.

Wizards tend to provide a single path of navigation through a series of

steps, while Web pages generally allow arbitrary navigation. However, even

lee@hayes pic 509:324-9256 26 1118031134 MS1-1791US.PAT

20

21

22

23

24

25

many Web sites require a specific path for certain tasks. For example, a checkout
line in a shopping application. Also, many wizards would be more effective and
less frustrating to users if they could provide a non-linear navigation sequence,
based on current state. For example, a wizard that requires an Internet connection
to complete its main purpose would be more effective if it could detect when a
user is already connected to the Internet, and bypass the steps to connect to the

internet without having to present the user with that decision.

A PageFunction is like a Web page because it is invoked by a navigation
request, and it can display UI like any other page. It is like a function because
each PageFunction object encapsulates a unit of functionality. Its caller can pass
state to it, and it can return a result when it has completed its purpose.
PageFunctions can be nested and chained. A PageFunction can also invoke other
PageFunctions and delegate to them to carry out all or part of its functionality. A
PageFunction can determine the next action to take (or the next PageFunction to
navigate to) based on accumulated state. A PageFunction can simply be a decision
point that delegates to other PageFunctions, but has no Ul itself. This allows for a
very flexible navigation model, in which the user can be led through a complex

procedure, omitting any steps that aren’t relevant.

A PageFunction can also specify that once it completes, it and all of its
childreﬁ (other PageFunctions it invoked in the process of completing its purpose)
should be removed from the Journal. An example of where this might be useful is
when a user has completed a transaction, or made a purchase. For security

reasons, it would be best if their credit card information isn’t still available if

lee@hayes pic 509-324-8256 27 1118031134 MS1-1791US.PAT

20

21

22

23

24

25

someone should click the Back button. With the PageFunction class 329, the
entire transaction can be removed form the Journal after the user reaches the
confirmation page, so when the user clicks Back, he’s returned to the point in the
application before the transaction was started. Clicking Forward would return to

the confirmation page.

PageFunction class

The PageFunction class 329 uses Generics (similar to Templates in C++).
This provides a way for the same class to be reused with different parameters in a
strongly typed way. In the case of PageFunctions, the parameter represents the
ReturnArgsType 330, which is the type of the value returned by the PageFunction

on completion.

The PageFunction class 329 has two properties, RemoveFromJournal,
which specifies whether the PageFunction and its children should be removed
from the Journal after completion, and KeepAlive, which specifies whether the
PageFunction should be kept in memory after navigating to a child PageFunction.
By default, the parent is “dehydrated” when navigating to a child, and
“rehydreated” when the child returns. This helps keep the working set down.
However, some PageFunction classes are expensive to initialize so, in these cases,
it may be worth the extra working set to not have to recreate the PageFunction
whenever a child returns. This is an implementation decision that will be available

to developers.

lee hayespsc 509-324:9256 28 1118031134 MS1-1791US PAT

"

10

11

12

13

14

20

21

22

23

24

25

The PageFunction class 329 has two methods. A virtual Start method is
overridden to initialize the PageFunction the first time it is navigated to. This
method is not called when a child PageFunction returns, only when the
PageFunction is invoked. @A virtual OnFinish method is called by the
PageFunction itself when it is ready to return to its caller. The parameter is also a
Generic class that takes the same type as the Generic parameter for the

PageFunction class. This is the value that is returned to the PageFunction’s caller.

The PageFunction class 329 also has an event, called Return. Whoever
invokes the PageFunction attaches a listener to this event. When the PageFunction
returns, the caller gets the return value from the EventArgs for this event, which is

parameterized with the same type as the PageFunction itself.

Localization

All resource access is done through relative URIs. When a resource is
loaded, the URI is resolved to an absolute URI using the codebase of the
application. Because URIs are resolved at run-time, resource requests can be
remapped at run-time based on localization settings. For example, the codebase
for the application http://myapp, a request for pages/pagel.xaml may be found
in the following locations, depending on the current localization setting:

e http://myapp/pages/enu/us/pagel.xaml
e http://myapp/pages/enu/pagel.xaml

o http://myapp/pages/pagel.xaml

lee@hayes pic 509-324-9256 29 1118031134 MS1-1791US.PAT

20

21

22

23

24

25

The Application Model allows for Ul to be localized by replacing the entire
markup associated with the UI. Since resource loading is done through the same

mechanism, it is possible to localize any type of resource, not just string resources.

Security

Figure 4 is a functional block diagram illustrating components of a system
that implements security in accordance with the Application Model. Today,
conventional desktop applications run with full trust. Once an application is
installed, it can do anything that the user can do. Web applications, on the other
hand, run with a restricted permission set. This helps protect the user from
malicious or buggy applications that could do harm to the users machine or data.
However, some legitimately safe applications require permissions beyond the
restricted permission set to be able to carry out their intended functionality. In
accordance with the Application Model, applications don’t get full trust just

because they’re installed locally.

An application 410 in accordance with the Application Model runs in a
Secure Execution Environment (SEE) 420. The SEE 420 defines a default
permission set 425, which is more limited than that experienced by the typical
desktop application installation. The SEE 420 may interact with a hosting
environment 440 that provides policy-based enforcement of access rights to local
resources. When the application 410 attempts to access a resource 414, the
application’s identity and site of origin are verified, and a check is performed to

determine whether the application's permission grant set 411 allows it to access the

lee@hayes pic 509-324-9256 30 1118031134 MS1-1791US.PAT

10

11

12

13

20

21

22

23

24

25

requested resource 415. If so, then the requested access is allowed. If not, then

the request is denied.

By default, applications run with the default permission set 425.
Applications can request further permissions, if required, by specifying the
permissions they need in the application manifest 412. If an application requires
permissions beyond the default permission set, installation is required. At
installation time, a Trust Manager 421 helps users decide if the application is
trustworthy. At installation time, the Trust Manager 421 inspects the application
manifest 412 to determine whether the application 410 is requesting ‘any
permissions beyond the default permission set 425. If so, the Trust Manager 421
evaluates the risk level of the permissions being requested, along with other
factors, like whether the application 410 is signed, whether it meets logo
requirements, etc., and determines an overall risk rating for the application 410.
The Trust Ul that is displayed to the user is different depending on the risk rating,
to help the user make an informed decision. If the user doesn’t grant the
permissions requested, the application may not be installed or allowed to run. If
the user accepts the heightened level of permissions requested, the application's
permissions are stored in association with the application as the application's

permission grant set 411,

The default permission set 425 is intended to allow maximum functionality
without compromising the security of the system. For example, an application that
needs to store configuration settings can use certain configuration APIs with the

default permission set 425 that guarantee no application can overwrite or modify

Iethayes plic 508-324-9256 3 1 1118031134 MS1-1791US.PAT

10

i1

12

13

14

15

19

20

21

22

23

24

25

another application's settings. The default permission state may allow an
application to stére state other than settings, for example, any content or state that
should not be rolled back when the application is rolled back. The default
permission set 425 may allow the application 410 to launch File Open/Save
dialogs. The File Open/Save dialogs provide a means for the user to store/retrieve
content in a user-selected file location, without making this information available
to the application 425. These activities are considered safe because they don’t
allow the application 410 direct access to the file system. However, if an
application requires direct programmatic access to the file system, it must request
File I/O permission, in which case, the user should be prompted by the Trust

Manager 421 when the application 410 is installed.

Ilustrative Computing Environment of the Invention

Figure 5 illustrates a computing device that may be used in illustrative
implementations of the present invention. With reference to Figure 5, one
exemplary system on which the invention may be implemented includes a
computing device, such as computing device 500. In a very basic configuration,
computing device 500 typically includes at least one processing unit 502 and
system memory 504. Depending on the exact configuration and type of
computing device, system memory 504 may be volatile (such as RAM), non-
volatile (such as ROM, flash memory, etc.) or some combination of the two.
System memory 504 typically includes an operating system 505, one or more
program modules 506, and may include program data 507. This basic
configuration of computing device 500 is illustrated in FIGURE 5 by those

components within dashed line 508.

lee@hayes pic 509-3249256 32 1118031134 MSI1-1791US.PAT

17

18

19

20

21

22

23

24

25

Computing device 500 may have additional features or functionality. For
example, computing device 500 may also include additional data storage devices
(removable -and/or non-removable) such as, for example, magnetic disks, optical
disks, or tape. Such additional storage is illustrated in Figure 5 by removable
storage 509 and non-removable storage 510. Computer storage media may
include volatile and nonvolatile, removable and non-removable media
implemented in any method or technology for storage of information, such as
computer readable instructions, data structures, program modules, or other data.
System memory 504, removable storage 509 and non-removable storage 510 are
all examples of computer storage media. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks ("DVD") or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information
and which can be accessed by computing device 500. Any such computer storage
media may be part of device 500. Computing device 500 may also have input
device(s) 512 such as keyboard 522, mouse 523, pen, voice input device, touch
input device, scanner, etc. Output device(s) 514 such as a display, speakers,
printer, etc. may also be included. These devices are well known in the art and

need not be discussed at length here.

Computing device 500 may also contain communication connections 516
that allow the device to communicate with other computing devices 518, such as

over a network. = Communication connections 516 is one example of

lee@hayes pic 5093243256 3 3 1118031134 MS1-1791US.PAT

20

21

22

23

24

25

communication media. Communication media may typically be embodied by
computer readable instructions, data structures, program modules, or other data in
a modulated data signal, such as a carrier wave or other transport mechanism, and
includes any information delivery media. The term “modulated data signal”
means a signal that has one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of example, and not
limitation, communication media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic, RF, infrared and
other wireless media. The term computer readable media as used herein includes

both storage media and communication media.

Although details of specific implementations and embodiments are
described above, such details are intended to satisfy statutory disclosure
obligations rather than to limit the scope of the following claims. Thus, the
invention as defined by the claims is not limited to the specific features described
above. Rather, the invention is claimed in any of its forms or modifications that
fall within the proper scope of the appended claims, appropriately interpreted in

accordance with the doctrine of equivalents.

lee @hayes pic 509-3240256 34 1118031134 MSI-1791US.PAT

	2003-11-18 Specification

